WiFi Indoor Location Based on Area Segmentation

Author:

Wang Yanchun,Gao Xin,Dai Xuefeng,Xia Ying,Hou Bingnan

Abstract

Indoor positioning is the basic requirement of future positioning services, and high-precision, low-cost indoor positioning algorithms are the key technology to achieve this goal. Different from outdoor maps, indoor data has the characteristic of uneven distribution and close correlation. In areas with low data density, in order to achieve a high-precision positioning effect, the positioning time will be correspondingly longer, but this is not necessary. The instability of WiFi leads to the introduction of noise when collecting data, which reduces the overall performance of the positioning system, so denoising is very necessary. For the above problems, a positioning system using the DBSCAN algorithm to segment regions and realize regionalized positioning is proposed. DBSCAN algorithm not only divides the dataset into core points and edge points, but also divides part of the data into noise points to achieve the effect of denoising. In the core part, the dimensionality of the data is reduced by using stacking auto-encoders (SAE), and the localization task is accomplished by using a deep neural network (DNN) with an adaptive learning rate. At the edge points, the random forest (RF) algorithm is used to complete the localization task. Finally, the proposed architecture is verified on the UJIIndoorLoc dataset. The experimental results show that our positioning accuracy does not exceed 1.5 m with a probability of less than 87.2% at the edge point, and the time is only 32 ms; the positioning accuracy does not exceed 1.5 m with a probability of less than 98.8% at the core point. Compared with indoor positioning algorithms such as multi-layer perceptron and K Nearest Neighbors (KNN), good results have been achieved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

1. Visual SLAM and Structure from Motion in Dynamic Environments

2. OpenVSLAM: A versatile visual SLAM framework;Sumikura;Proceedings of the 27th ACM International Conference on Multimedia,2019

3. WiFi-based indoor positioning

4. Robot Localization and Navigation Using Visible Light Positioning and SLAM Fusion

5. Localization error analysis of indoor positioning system based on UWB measurements;Poulose;Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN),2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3