Indoor positioning fingerprint database construction based on CSA-DBSCAN and RCVAE-GAN

Author:

Pan Lei,Zhang HaoORCID,Zhang LiyangORCID,Gao RuiORCID,Zhang Qian

Abstract

Abstract With the increasing size of buildings, in order to achieve high-precision indoor positioning services, it is a challenging task to build an offline fingerprint database with high quality, high density and less manpower and material consumption. Aiming to solve the problem of low-quality WiFi indoor positioning fingerprint inventory constructed by traditional methods, which affects positioning accuracy and incurs high costs, this paper proposes a method for indoor positioning fingerprint database construction based on Crow Search Algorithm Optimizes Density Clustering (CSA-DBSCAN) and Regressor Conditional VAE Generative Adversarial Network (RCVAE-GAN). Collecting only a tiny amount of sparse reference point position coordinates and RSS data makes it possible to construct a high-quality WiFi indoor positioning fingerprint database. Firstly, the method utilizes the density clustering method based on Crow Search Algorithm Optimization (CSA-DBSCAN) to process RSS data collected from the reference point. This helps minimize the impact of abnormal RSS data on creating the fingerprint database. Secondly, the RCVAE-GAN depth generation model was developed. The model consists of an encoder E, a generator G, a discriminator D, and a regressor R. After constructing the model, the data with abnormal RSS will be removed and input into the model for pre-training and joint training, resulting in a high-quality deep-generation model. Finally, a high-quality and high-density fingerprint database is constructed by combining the collected reference points with fingerprint data generated by the depth generation model. Experimental results show that the proposed method reduces the root mean square error (RMSE) deviation of the generated fingerprint data by 38% and 12% respectively, compared to the RBF interpolation method and the CVAE-GAN method in the same experimental scenario. The constructed fingerprint database is used for positioning, improving positioning accuracy by 70% and 65% respectively. The method described in this paper can construct a high-quality fingerprint database, effectively improving the efficiency of fingerprint database construction and reducing the costs associated with labor and time.

Funder

National Natural Science Foundation of China

Tianjin Natural Science Foundation

Publisher

IOP Publishing

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indoor fingerprint localization algorithm based on WKNN and LightGBM-GA;Measurement Science and Technology;2024-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3