Abstract
This paper presents a novel approach to the cosmological constant problem by the use of the Clifford algebras of space Cl3,0 and anti-space Cl0,3 with a particular focus on the paravector representation, emphasizing the fact that both algebras have a center represented just by two coordinates. Since the paravector representation allows assigning the scalar element of grade 0 to the time coordinate, we consider the relativity in such two-dimensional spacetime for a uniformly accelerated frame with the constant acceleration 3H0c. Using the Rindler coordinate transformations in two-dimensional spacetime and then applying it to Minkowski coordinates, we obtain the FLRW metric, which in the case of the Clifford algebra of space Cl3,0 corresponds to the anti-de Sitter (AdS) flat (k=0) case, the negative cosmological term and an oscillating model of the universe. The approach with anti-Euclidean Clifford algebra Cl0,3 leads to the de Sitter model with the positive cosmological term and the exact form of the scale factor used in modern cosmology.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference24 articles.
1. Cosmological constant problems and their solutions;Vilenkin;arXiv,2001
2. The cosmological constant problem
3. Unified Two Dimensional Spacetime for the River Model of Gravity and Cosmology;Kritov;Prog. Phys.,2019
4. Lectures on Clifford (Geometric) Algebras and Applications;Ablamowicz,2003
5. Mathematical Papers by William Kingdon Clifford;Clifford,1882
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献