A Note on the Representation of Clifford Algebras

Author:

Gu Ying-Qiu,

Abstract

In this note we construct explicit complex and real faithful matrix representations of the Clifford algebras $\Cl_{p,q}$. The representation is based on Pauli matrices and has an elegant structure similar to the fractal geometry. In the cases $p+q=4m$, the representation is unique in equivalent sense, and the $1+3$ dimensional space-time corresponds to the simplest and best case. Besides, the relation between the curvilinear coordinate frame and the local orthonormal basis in the curved space-time is discussed in detail, the covariant derivatives of the spinor and tensors are derived, and the connection of the orthogonal basis in tangent space is calculated. These results are helpful for both theoretical analysis and practical calculation. The basis matrices are the faithful representation of Clifford algebras in any $p+q$ dimensional Minkowski space-time or Riemann space, and the Clifford calculus converts the complicated relations in geometry and physics into simple and concise algebraic operations. Clifford numbers over any number field $\mathbb{F}$ expressed by this matrix basis form a well-defined $2^n$ dimensional hypercomplex number system. Therefore, we can expect that Clifford algebras will complete a large synthesis in science.

Publisher

Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)

Subject

Geometry and Topology,Mathematical Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametrizing Clifford Algebras’ Matrix Generators with Euler Angles;Advances in Applied Clifford Algebras;2024-09-02

2. Pauli Exclusion Principle and Nonlinear Dirac Equation;Journal of Geometry and Symmetry in Physics;2024-03-31

3. Development of the Method of Averaging in Clifford Geometric Algebras;Mathematics;2023-08-21

4. Spinor Equation and Operator Algebra;Journal of Geometry and Symmetry in Physics;2023

5. Conceptual Problems in Bell’s Inequality and Quantum Entanglement;Journal of Applied Mathematics and Physics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3