A Two-Stream CNN Model with Adaptive Adjustment of Receptive Field Dedicated to Flame Region Detection

Author:

Lu Peng,Zhao YaqinORCID,Xu Yuan

Abstract

Convolutional neural networks (CNN) have yielded state-of-the-art performance in image segmentation. Their application in video surveillance systems can provide very useful information for extinguishing fire in time. The current studies mostly focused on CNN-based flame image classification and have achieved good accuracy. However, the research of CNN-based flame region detection is extremely scarce due to the bulky network structures and high hardware configuration requirements of the state-of-the-art CNN models. Therefore, this paper presents a two-stream convolutional neural network for flame region detection (TSCNNFlame). TSCNNFlame is a lightweight CNN architecture including a spatial stream and temporal stream for detecting flame pixels in video sequences captured by fixed cameras. The static features from the spatial stream and dynamic features from the temporal stream are fused by three convolutional layers to reduce the false positives. We replace the convolutional layer of CNN with the selective kernel (SK)-Shuffle block constructed by integrating the SK convolution into the deep convolutional layer of ShuffleNet V2. The SKnet blocks can adaptively adjust the size of one receptive field with the proportion of one region of interest (ROI) in it. The grouped convolution used in Shufflenet solves the problem in which the multi-branch structure of SKnet causes the network parameters to double with the number of branches. Therefore, the CNN network dedicated to flame region detection balances the efficiency and accuracy by the lightweight architecture, the temporal–spatial features fusion, and the advantages of the SK-Shuffle block. The experimental results, which are evaluated by multiple metrics and are analyzed from many angles, show that this method can achieve significant performance while reducing the running time.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3