A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection from UAV

Author:

Lu KangjieORCID,Xu Renjie,Li Junhui,Lv Yuhao,Lin Haifeng,Liu YunfeiORCID

Abstract

Forest fires have the characteristics of strong unpredictability and extreme destruction. Hence, it is difficult to carry out effective prevention and control. Once the fire spreads, devastating damage will be caused to natural resources and the ecological environment. In order to detect early forest fires in real-time and provide firefighting assistance, we propose a vision-based detection and spatial localization scheme and develop a system carried on the unmanned aerial vehicle (UAV) with an OAK-D camera. During the high incidence of forest fires, UAVs equipped with our system are deployed to patrol the forest. Our scheme includes two key aspects. First, the lightweight model, NanoDet, is applied as a detector to identify and locate fires in the vision field. Techniques such as the cosine learning rate strategy and data augmentations are employed to further enhance mean average precision (mAP). After capturing 2D images with fires from the detector, the binocular stereo vision is applied to calculate the depth map, where the HSV-Mask filter and non-zero mean method are proposed to eliminate the interference values when calculating the depth of the fire area. Second, to get the latitude, longitude, and altitude (LLA) coordinates of the fire area, coordinate frame conversion is used along with data from the GPS module and inertial measurement unit (IMU) module. As a result, we experiment with simulated fire in a forest area to test the effectiveness of this system. The results show that 89.34% of the suspicious frames with flame targets are detected and the localization error of latitude and longitude is in the order of 10−5 degrees; this demonstrates that the system meets our precision requirements and is sufficient for forest fire inspection.

Funder

Postgraduate Research &Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Forestry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3