Author:
Cao Dongping,Dang Jiachen,Zhong Yong
Abstract
Scene text detection, this task of detecting text from real images, is a hot research topic in the machine vision community. Most of the current research is based on an anchor box. These methods are complex in model design and time-consuming to train. In this paper, we propose a new Fully Convolutional One-Stage Object Detection (FCOS)-based text detection method that can robustly detect multioriented and multilingual text from natural scene images in a per pixel prediction approach. Our proposed text detector employs an anchor-free approach, unlike state-of-the-art text detectors that do not rely on a predefined anchor box. In order to enhance the feature representation ability of FCOS for text detection tasks, we apply the Bidirectional Feature Pyramid Network (BiFPN) as the backbone network, enhancing the model learning capacity and increasing the receptive field. We demonstrate the superior performance of our method on multioriented (ICDAR-2015, ICDAR-2017 MLT) and horizontal (ICDAR-2013) text detection benchmark tasks. Moreover, our method has an f-measure of 88.65 and 86.32 for the benchmark datasets ICDAR 2013 and ICDAR 2015, respectively, and 80.75 for the ICDAR-2017 MLT dataset.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献