Scene Text Detection Based on Multi-Headed Self-Attention Using Shifted Windows

Author:

Huang Baohua1ORCID,Feng Xiaoru1

Affiliation:

1. School of Computer and Electronic Information, Guangxi University, Nanning 530004, China

Abstract

Scene text detection has become a popular topic in computer vision research. Most of the current research is based on deep learning, using Convolutional Neural Networks (CNNs) to extract the visual features of images. However, due to the limitations of convolution kernel size, CNNs can only extract local features of images with small perceptual fields, and they cannot obtain more global features. In this paper, to improve the accuracy of scene text detection, a feature enhancement module is added to the text detection model. This module acquires global features of an image by computing the multi-headed self-attention of the feature map. The improved model extracts local features using CNNs, while extracting global features through the feature enhancement module. The features extracted by both of these are then fused to ensure that visual features at different levels of the image are extracted. A shifted window is used in the calculation of the self-attention, which reduces the computational complexity from the second power of the input image width-height product to the first power. Experiments are conducted on the multi-oriented text dataset ICDAR2015 and the multi-language text dataset MSRA-TD500. Compared with the pre-improvement method DBNet, the F1-score improves by 0.5% and 3.5% on ICDAR2015 and MSRA-TD500, respectively, indicating the effectiveness of the model improvement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3