Remote Sensing Imagery Super Resolution Based on Adaptive Multi-Scale Feature Fusion Network

Author:

Wang Xinying,Wu Yingdan,Ming Yang,Lv Hui

Abstract

Due to increasingly complex factors of image degradation, inferring high-frequency details of remote sensing imagery is more difficult compared to ordinary digital photos. This paper proposes an adaptive multi-scale feature fusion network (AMFFN) for remote sensing image super-resolution. Firstly, the features are extracted from the original low-resolution image. Then several adaptive multi-scale feature extraction (AMFE) modules, the squeeze-and-excited and adaptive gating mechanisms are adopted for feature extraction and fusion. Finally, the sub-pixel convolution method is used to reconstruct the high-resolution image. Experiments are performed on three datasets, the key characteristics, such as the number of AMFEs and the gating connection way are studied, and super-resolution of remote sensing imagery of different scale factors are qualitatively and quantitatively analyzed. The results show that our method outperforms the classic methods, such as Super-Resolution Convolutional Neural Network(SRCNN), Efficient Sub-Pixel Convolutional Network (ESPCN), and multi-scale residual CNN(MSRN).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. JOA‐GAN: An improved single‐image super‐resolution network for remote sensing based on GAN;IET Image Processing;2024-08-27

2. Super-Resolution Image Reconstruction Method between Sentinel-2 and Gaofen-2 Based on Cascaded Generative Adversarial Networks;Applied Sciences;2024-06-08

3. An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution;2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2024-05-27

4. Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning;Scientific Reports;2024-01-16

5. Model-Based Super-Resolution for Sentinel-5P Data;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3