Immunotherapy with 4-1BBL-Expressing iPS Cell‐Derived Myeloid Lines Amplifies Antigen-Specific T Cell Infiltration in Advanced Melanoma

Author:

Kuriyama HarukaORCID,Fukushima SatoshiORCID,Kimura Toshihiro,Kanemaru Hisashi,Miyashita Azusa,Okada Etsuko,Kubo Yosuke,Nakahara Satoshi,Tokuzumi Aki,Nishimura Yuki,Kajihara Ikko,Makino Katsunari,Aoi JunORCID,Masuguchi Shinichi,Tsukamoto HirotakeORCID,Inozume Takashi,Zhang Rong,Nakatsura Tetsuya,Uemura Yasushi,Senju Satoru,Ihn Hironobu

Abstract

We have established an immune cell therapy with immortalized induced pluripotent stem-cell–derived myeloid lines (iPS-ML). The benefits of using iPS-ML are the infinite proliferative capacity and ease of genetic modification. In this study, we introduced 4-1BBL gene to iPS-ML (iPS-ML-41BBL). The analysis of the cell-surface molecules showed that the expression of CD86 was upregulated in iPS-ML-41BBL more than that in control iPS-ML. Cytokine array analysis was performed using supernatants of the spleen cells that were cocultured with iPS-ML or iPS-ML-41BBL. Multiple cytokines that are beneficial to cancer immunotherapy were upregulated. Peritoneal injections of iPS-ML-41BBL inhibited tumor growth of peritoneally disseminated mouse melanoma and prolonged survival of mice compared to that of iPS-ML. Furthermore, the numbers of antigen-specific CD8+ T cells were significantly increased in the spleen and tumor tissues treated with epitope peptide-pulsed iPS-ML-41BBL compared to those treated with control iPS-ML. The number of CXCR6-positive T cells were increased in the tumor tissues after treatment with iPS-ML-41BBL compared to that with control iPS-ML. These results suggest that iPS-ML-41BBL could activate antigen-specific T cells and promote their infiltration into the tumor tissues. Thus, iPS-ML-41BBL may be a candidate for future immune cell therapy aiming to change immunological “cold tumor” to “hot tumor”.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3