SG-Det: Shuffle-GhostNet-Based Detector for Real-Time Maritime Object Detection in UAV Images

Author:

Zhang Lili1,Zhang Ning1,Shi Rui2,Wang Gaoxu2,Xu Yi2,Chen Zhe1ORCID

Affiliation:

1. College of Computer and Information Engineering, Hohai University, Nanjing 211100, China

2. State Key Laboratory of Hydrology—Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

Abstract

Maritime search and rescue is a crucial component of the national emergency response system, which mainly relies on unmanned aerial vehicles (UAVs) to detect objects. Most traditional object detection methods focus on boosting the detection accuracy while neglecting the detection speed of the heavy model. However, improving the detection speed is essential, which can provide timely maritime search and rescue. To address the issues, we propose a lightweight object detector named Shuffle-GhostNet-based detector (SG-Det). First, we construct a lightweight backbone named Shuffle-GhostNet, which enhances the information flow between channel groups by redesigning the correlation group convolution and introducing the channel shuffle operation. Second, we propose an improved feature pyramid model, namely BiFPN-tiny, which has a lighter structure capable of reinforcing small object features. Furthermore, we incorporate the Atrous Spatial Pyramid Pooling module (ASPP) into the network, which employs atrous convolution with different sampling rates to obtain multi-scale information. Finally, we generate three sets of bounding boxes at different scales—large, medium, and small—to detect objects of different sizes. Compared with other lightweight detectors, SG-Det achieves better tradeoffs across performance metrics and enables real-time detection with an accuracy rate of over 90% for maritime objects, showing that it can better meet the actual requirements of maritime search and rescue.

Funder

Guangdong Water Technology Innovation Project

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3