Learning to See the Hidden Part of the Vehicle in the Autopilot Scene

Author:

Xu Yifeng,Wang Huigang,Liu Xing,He Henry,Gu Qingyue,Sun Weitao

Abstract

Recent advances in deep learning have shown exciting promise in low-level artificial intelligence tasks such as image classification, speech recognition, object detection, and semantic segmentation, etc. Artificial intelligence has made an important contribution to autopilot, which is a complex high-level intelligence task. However, the real autopilot scene is quite complicated. The first accident of autopilot occurred in 2016. It resulted in a fatal crash where the white side of a vehicle appeared similar to a brightly lit sky. The root of the problem is that the autopilot vision system cannot identify the part of a vehicle when the part is similar to the background. A method called DIDA was first proposed based on the deep learning network to see the hidden part. DIDA cascades the following steps: object detection, scaling, image inpainting assuming a hidden part beside the car, object re-detection from inpainted image, zooming back to the original size, and setting an alarm region by comparing two detected regions. DIDA was tested in a similar scene and achieved exciting results. This method solves the aforementioned problem only by using optical signals. Additionally, the vehicle dataset captured in Xi’an, China can be used in subsequent research.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. A Tragic Losshttps://www.tesla.com/blog/tragic-loss

2. ImageNet classification with deep convolutional neural networks

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3