Early Detection of Wheat Yellow Rust Disease and Its Impact on Terminal Yield with Multi-Spectral UAV-Imagery

Author:

Nguyen Canh123,Sagan Vasit12ORCID,Skobalski Juan124,Severo Juan Ignacio4

Affiliation:

1. Taylor Geospatial Institute, St. Louis, MO 63108, USA

2. Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA

3. Department of Aviation, University of Central Missouri, Warrensburg, MO 64093, USA

4. GDM Seeds, Chacabuco, Buenos Aires 6740, Argentina

Abstract

The food production system is vulnerable to diseases more than ever, and the threat is increasing in an era of climate change that creates more favorable conditions for emerging diseases. Fortunately, scientists and engineers are making great strides to introduce farming innovations to tackle the challenge. Unmanned aerial vehicle (UAV) remote sensing is among the innovations and thus is widely applied for crop health monitoring and phenotyping. This study demonstrated the versatility of aerial remote sensing in diagnosing yellow rust infection in spring wheats in a timely manner and determining an intervenable period to prevent yield loss. A small UAV equipped with an aerial multispectral sensor periodically flew over, and collected remotely sensed images of, an experimental field in Chacabuco (−34.64; −60.46), Argentina during the 2021 growing season. Post-collection images at the plot level were engaged in a thorough feature-engineering process by handcrafting disease-centric vegetation indices (VIs) from the spectral dimension, and grey-level co-occurrence matrix (GLCM) texture features from the spatial dimension. A machine learning pipeline entailing a support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) was constructed to identify locations of healthy, mild infection, and severe infection plots in the field. A custom 3-dimensional convolutional neural network (3D-CNN) relying on the feature learning mechanism was an alternative prediction method. The study found red-edge (690–740 nm) and near infrared (NIR) (740–1000 nm) as vital spectral bands for distinguishing healthy and severely infected wheats. The carotenoid reflectance index 2 (CRI2), soil-adjusted vegetation index 2 (SAVI2), and GLCM contrast texture at an optimal distance d = 5 and angular direction θ = 135° were the most correlated features. The 3D-CNN-based wheat disease monitoring performed at 60% detection accuracy as early as 40 days after sowing (DAS), when crops were tillering, increasing to 71% and 77% at the later booting and flowering stages (100–120 DAS), and reaching a peak accuracy of 79% for the spectral-spatio-temporal fused data model. The success of early disease diagnosis from low-cost multispectral UAVs not only shed new light on crop breeding and pathology but also aided crop growers by informing them of a prevention period that could potentially preserve 3–7% of the yield at the confidence level of 95%.

Funder

NSF CPS

SGS AmericaView

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3