Blast Effects of a Shear Thickening Fluid-Based Stemming Material

Author:

Ko YounghunORCID,Kwak Kiseok

Abstract

The Trauzl test is widely used to measure the explosive power of a substance by determining the volume increase produced by the detonation of a tested explosive charge in the cavity of a lead block with defined quality and size. In this study, the Trauzl lead block test and a high-speed 3D digital image correlation (3D-DIC) system were used to evaluate the effect of stemming on a blast hole. The blasting experiments were conducted with emulsion explosives. The stemming materials adopted in this study were sand, aggregate, and shear thickening fluid (STF)-based stemming materials. The results of the blasting experiments and numerical analysis showed that the expansion rate of the lead block was most affected by STF-based materials, followed by aggregates and sand stemming. Furthermore, the displacement and surface strain on the block were the highest in the experimental case using STF-based stemming materials. The STF-based stemming material developed in this study in open pit mining or various blasting constructions is expected to increase rock fragment efficiency, compared to that of general blasting stemming methods, and reduce blasting vibration by decreasing the amount of explosive per blast hole used for blasting.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

General Medicine

Reference27 articles.

1. Theoretical discussion on optimization of blasting effect in surface mining;Wang;Express Inf. Min. Ind.,2005

2. Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and Numerical Analysis;Ko;J. Korean Soc. Explos. Blast.,2017

3. Numerical investigation of blasting-induced damage in cylindrical rocks

4. A laboratory study on reducing the quantity of rock fines at failure: application to rock blasting and crushing

5. Stress pulse attenuation in shear thickening fluid

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3