Abstract
Recent changes in the fossil-fuel energy sector require coal mining industries to plan for the future, including developing procedures for decommissioning and closure associated with mines. In surface coal mining, the geotechnical issues of decommissioning include the long-term stability of the pit slopes, particularly as the pit is gradually filled with water. This paper investigates such slope stability issues, with emphasis on the conditions prevailing in the Amyntaion surface lignite mine, in Western Macedonia, Greece. Analytical and numerical methods have been developed and used to estimate the temporal evolution of the overall safety factor, as the water level in the pit rises, creating a lake. It is shown that until the water level in the lake reaches a critical depth of approximately 15–35% of the final equilibrium condition, the safety factor against the overall slope instability decreases slightly (by about 3% in the case study, and up to 5–10% in other conditions) compared to its value at the end of exploitation. At higher lake levels, the safety factor increases significantly, as the beneficial effect of the lake water pressure acting on the slope overcomes the adverse effect of pore water pressure rise inside the slope. In typical mines, the critical water depth is achieved within a few years, since the surface area of the pit is smaller at deeper levels; thus, more favorable slope stability conditions are usually reinstated a few years after mine closure, while the small reduction in safety during the initial stages after closure is inconsequential. The paper investigates the parameters influencing the magnitude of the small reduction in the short-term safety factor and produces normalized graphs of the evolution of the safety factor as the lake water level rises. The results of the analyses can be used in preliminary closure studies of surface coal mines.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献