Analysis of the Critical Safety Thickness for Pretreatment of Mined-Out Areas Underlying the Final Slopes of Open-Pit Mines and the Effects of Treatment

Author:

Tao Zhigang12ORCID,Li Mengnan12,Zhu Chun123ORCID,He Manchao123,Zheng Xiaohui12,Yu Shibo4

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

3. College of Construction Engineering, Jilin University, Changchun 130026, China

4. Beijing General Research Institute of Mining & Metallurgy, Beijing 100083, China

Abstract

Where a mined-out area underlies a slope, it is a direct threat to slope safety and stability. This is of particular concern where a mined-out area underlies the slope of an open-pit mine, and it has a serious impact on the design and safety measures used for the mine. If a mined-out area underlying the final slope of an open-pit mine is not treated adequately and at the appropriate time, it may cause the slip failure of the final slope during the service life of the mine, posing a serious threat to the safety of personnel and equipment during the stripping phase. In light of the potential for such problems, this paper analyzes the instability mode and failure characteristics of an open-pit slope near a mined-out area in China using geological field survey and the polar stereographic projection method. The scale span method, in combination with engineering analogy and consideration of open-pit mining technology, is then used to determine the critical safety thickness at which pretreatment of mined-out areas should be carried out. A pretreatment process to infill the mined-out area during construction of open-pit mine steps is put forward, and its effects on slope stability and reliability are comprehensively evaluated. The results show that circular sliding is the most appropriate instability mode for a slope near a mined-out area. The failure initiates through breakage in the roof of the mined-out area, which induces subduction sliding of the free face of the slope at the left boundary of the mined-out area and subsequent failure of the entire regional slope. Comprehensive analysis methods are used to determine that the critical safety thickness at which a mined-out area under the final open-pit slope should be pretreated is 24 m. The recommended treatment countermeasure is to transfer filling slurry into the mined-out area through drilling holes in benches. This can satisfy the stability and reliability requirements for the slope under different working conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3