Cemented Paste Backfill (CPB) Material Properties for Undercut Analysis

Author:

Grabinsky MurrayORCID,Jafari Mohammadamin,Pan AndrewORCID

Abstract

A longstanding mine backfill design challenge is determining the strength required if the (partially) cured backfill is subsequently undercut. Mitchell (1991) called the undercut backfill a sill mat and proposed an analytical solution that is still often used, at least for preliminary design, and has motivated subsequent empirical design methods. However, fully employing the Mitchell sill mat solution requires knowledge of the backfill material’s Unconfined Compressive Strength (UCS), tangent Young’s modulus (Et), tensile strength (σt), as well as estimates of stope wall closure. Conducting a high-quality UCS test poses challenges but relating the test result to the remaining material parameters is more difficult. Some new material testing data is presented and compared to available published results. Using the parameter mi=UCS/σt the range of available testing data is found to be mi= 3 to 22, however, the most compelling data is obtained when the Mohr’s failure circle in tension is tangential to the corresponding Mohr–Coulomb failure envelope determined from other strength tests. In these cases, the value mi= 4 is found for the materials tested, which is much lower than the value mi= 10 commonly assumed and implies a limiting UCS 60% lower compared to the conventional assumption. It is also found that the relationship between Et and UCS is described by a power function that is close to linear, but the values for the constant and exponent in the power function depend on the material tested. However, for given tailings the power function is found to be independent of void ratio, binder type or concentration, curing time, and water salinity, within the ranges these parameters were investigated. Therefore, when Et is used in the Mitchell sill mat solution it should be correlated with the UCS using the appropriate power function. These correlations are then used with the Mitchell sill mat solution and published measurements of backfill closure strains to estimate the Mitchell solution’s range of applicability based on its underlying assumptions, and a similar analysis is extended to an “empirical design method” motivated by the Mitchell sill mat solution. It is demonstrated that these existing approaches have limited applicability, and more generally a full analysis in support of rational design will require numerical modeling that incorporates the effect of confining stress on the material’s stiffness and mobilized strength.

Publisher

MDPI AG

Subject

General Medicine

Reference48 articles.

1. Sill mat evaluation using centrifuge models

2. Cemented Paste Backfill Geomechanics at a Narrow-Vein Underhand Cut-and-Fill Mine

3. Field Evaluation of Hydraulic Backfill Compaction at the Lucky Friday Mine, Mullan, Idaho;Corson,1971

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3