Design and Development of Hybrid Al2O3 Based Composites with Toughening and Self-Lubricating Second-Phase Inclusions

Author:

Akhtar ,Waqar ,Hakeem ,Arif ,Al-Athel

Abstract

Polycrystalline ceramics, such as alumina (Al2O3), are brittle and they generally wear by fracture mechanism, which limits their potential in tribological applications. In the present work, computational design tools are used to develop hybrid Al2O3 composites reinforced with best combinations of toughening and self-lubricating second-phase particles for cutting tool inserts in dry machining applications. A mean-field homogenization approach and J-integral based fracture toughness models are employed to predict the effective structural properties (such as elastic modulus and fracture toughness) and related to the intrinsic attributes of second- phase inclusions in Al2O3 matrix. Silicon carbide (SiC), boron nitride (cBN and hBN), zirconia (ZrO2), graphite, titanium dioxide (TiO2), and titanium carbide (TiC) were found the most suitable candidates to be added in Al2O3 matrix as individual or hybrid combinations. A series of samples including standalone Al2O3, single inclusion composites (Al2O3/SiC, Al2O3/cBN) and hybrid composites (Al2O3/SiC/cBN, Al2O3/SiC/TiO2 and Al2O3/SiC/graphite) are sintered by Spark Plasma Sintering (SPS) for validation purpose. Properties of the sintered composites are measured and compared with the proposed computational material design. Composition and phase transformation of the sintered samples are studied using X-Ray diffraction (XRD) and Raman spectroscopy, while their morphology is studied using Field Emission Scanning Electron Microscope (FESEM). The presented nontraditional material design approach is found to significantly reduce experimental time and cost of materials in developing toughened and anti-friction ceramic composites.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications;Grzesik,2008

2. Cutting Tool Applications;Schneider,2002

3. Development and Application of New Cutting Tool Materials; Proc. Conf. Improv. Mach. Tool Performance, San Sebastian, Spain, 1998, pp. 303–313https://pdfs.semanticscholar.org/02f1/f81593eb68de1747afad12f50d0c592dd019.pdf

4. Hard machining of hardened bearing steel using cubic boron nitride tool

5. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3