Experimental and Modeling Study on Cr(VI) Migration from Slag into Soil and Groundwater

Author:

Wu Xiange,Ye Tiantian,Xie ChunshengORCID,Li Kun,Liu Chang,Yang Zhihui,Han Rui,Wu Honghua,Wang Zhenxing

Abstract

The transport and prediction of hexavalent chromium (Cr(VI)) contamination in “slag–soil–groundwater” is one with many uncertainties. Based on the column experiments, a migration model for Cr(VI) in the slag–soil–groundwater system was investigated. The hydraulic conductivity (Kt), distribution coefficient (Kd), retardation factor (Rd), and other hydraulic parameters were estimated in a laboratory. Combining these hydraulic parameters with available geological and hydrogeological data for the study area, the groundwater flow and Cr(VI) migration model were developed for assessing groundwater contamination. Subsequently, a Cr(VI) migration model was developed to simulate the transport of Cr(VI) in the slag–soil–groundwater system and predict the effect of three different control programs for groundwater contamination. The results showed that the differences in the measured and predicted groundwater head values were all less than 3 m. The maximum and minimum differences in Cr(VI) between the measured and simulated values were 1.158 and 0.001 mg/L, respectively. Moreover, the harmless treatment of Cr(VI) slag considerably improved the quality of groundwater in the surrounding areas. The results of this study provided a reliable mathematical model for transport process analysis and prediction of Cr(VI) contamination in a slag–soil–groundwater system.

Funder

National Natural Science Foundation of China

Pearl River S&T Nova Program of Guangzhou, China

Science and Technology Innovation Guidance Project of Zhaoqing City

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3