Research on Parameter Matching of the Asymmetric Pump Potential Energy Recovery System Based on Multi-Core Parallel Optimization Method

Author:

Wei Lixin,Ning Zhiqiang,Quan Long,Wang Aihong,Gao Youshan

Abstract

Aiming at the parameters of the different displacements and related components of the variable-displacement asymmetric axial piston pump (VAPP) required by the energy-recovery system of excavator booms of different tonnages, a rapid multi-process parallel optimization method of complex hydraulic products based on a multi-core CPU was proposed for parameter matching. The parameter matching was used to reasonably select relevant parameters so that the excavator’s boom energy-recovery and utilization system can improve operational efficiency and energy-saving efficiency under the premise of satisfying the normal working conditions of the working mechanism, and achieving the purpose of serializing VAPP products. A multi-objective optimization model was put forward according to energy-saving efficiency and operational efficiency. First, the accuracy of the acceleration method of the CVODE, a solver for stiff and non-stiff ordinary differential equation (ODE) systems, was verified by a physical prototype test. The results showed that the test and simulation results were in good agreement. A particle swarm optimization algorithm (PSO) was used to optimize the main parameters of the boom energy-recovery system to obtain the appropriate energy-saving efficiency and obtain the VAPP displacement and related component parameters required by the energy-recovery system of excavator booms of different tonnages. The simulation results showed that a motor working condition was necessary in the guaranteed descending stage, and the process of lifting–descending–lifting was completed under the condition that the total time did not exceed a certain value. The energy-saving rates of the 7-ton (7T), 12-ton (12T), 20-ton (20T), and 30-ton (30T) excavator boom energy-recovery systems reached 29.8%, 35.3%, 31.25%, and 27.88%, respectively. In the eight-core CPU workstation under the simulation conditions, compared with the Simulation X platform simulation method, the simulation efficiency of the multi-core CPU parallel method was improved by more than 80 times.

Funder

National Natural Science Foundation of China

Graduate Innovation Project of Shanxi Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference27 articles.

1. Energy saving solutions for a hydraulic excavator;Energy Procedia,2017

2. Kinematic modeling and constraint analysis for robotic excavator operations in piling construction;Autom. Constr.,2021

3. Research on the Characteristics of Asymmetric Pump Directed Controlled Arm Cylinder of Excavator;J. Mech. Eng.,2016

4. Lodewyks, J. (1994). Differentialzylinder Im Geschlossenen Hydrostatischen Getriebe, RWTH Aachen.

5. Daniel, B., Claus, H., and Thomas, L. (2011, January 17). Hybrid-antriebe bei raupenbaggern—Konzepte und losungen. Proceedings of the 3th Hybridantriebe fur Mobile Arbeitsmaschinen Fachtagung, Karlsruhe, Germany.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3