Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates

Author:

Vikulova MariaORCID,Maximova LiliaORCID,Rudyh Valeria,Gorshkov NikolayORCID,Gorokhovsky Alexander

Abstract

In this work, protonated forms of potassium polytitanate were obtained by treating the precursor in HCl solution at pH 2.0, 3.0, 4.0, 5.0, 6.0, or 7.0. The synthesized materials were studied using XRD, FTIR, and XRF. The ion-exchange properties were studied using a LiCl solution with a concentration of C(Li+) = 0.01 mol/L. It was shown that extraction of lithium by potassium polytitanates is dependent on their protonation degree. It has been established that the samples with the highest degree of protonation obtained at pH = 2.0 and 3.0 have the highest efficiency in the ion-exchange extraction of Li+ ions from an aqueous solution. For determination of exchange ion rates and the mechanism of the ion-exchange process, pseudo-first- and pseudo-second-order models as well as the Weber–Morris intraparticle diffusion model, were employed. Experimental data with their participation are in good agreement with the pseudo-second-order kinetic model. The calculated kinetic parameters were qe = 0.47–0.52 mmol/g and k2 = 0.25–0.43, depending on the protonation degree of potassium polytitanate. The obtained experimental and calculated values of the sorption capacity were compared with the cation-exchange capacity of materials studied. According to the kinetics study, the mechanism of lithium adsorption by potassium polytitanates with a higher protonation degree is the ion-exchange chemical reaction. Low-cost protonated potassium polytitanates are promising to extract Li+ ions from aqueous solutions with a low concentration, as confirmed by the analysis of the results.

Funder

grant of the President of the Russian Federation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3