The impact of anthropogenic inputs on lithium content in river and tap water

Author:

Choi Hye-BinORCID,Ryu Jong-SikORCID,Shin Woo-JinORCID,Vigier Nathalie

Abstract

AbstractThe use of lithium (Li) has dramatically increased during the last two decades due to the proliferation of mobile electronic devices and the diversification of electric-powered vehicles. Lithium is also prescribed as a medication against bipolar disorder. While Li can exert a toxic effect on living organisms, few studies have investigated the impact of anthropogenic inputs on Li levels in the environment. Here we report Li concentrations and Li isotope compositions of river, waste and tap water, and industrial products from the metropolitan city of Seoul. Results show that the large increase in population density in Seoul is accompanied by a large enrichment in aqueous Li. Lithium isotopes evidence a major release from Li-rich materials. Water treatment protocols are also shown to be inefficient for Li. Our study therefore highlights the need for a global Li survey and adequate solutions for minimizing their impact on ecosystems and city dwellers.

Funder

National Research Council of Science and Technology

ANR ISO2MET Grant

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3