Targeted Metabolic Analysis and MFA of Insect Cells Expressing Influenza HA-VLP

Author:

Murad Alexandre B.,Sousa Marcos Q.,Correia Ricardo,Isidro Inês A.ORCID,Carrondo Manuel J. T.,Roldão AntónioORCID

Abstract

Virus-like particles (VLPs) are versatile vaccine carriers for conferring broad protection against influenza by enabling high-level display of multiple hemagglutinin (HA) strains within the same particle construct. The insect cell-baculovirus expression vector system (IC-BEVS) is amongst the most suitable platforms for VLP expression; however, productivities vary greatly with particle complexity (i.e., valency) and the HA strain(s) to be expressed. Understanding the metabolic signatures of insect cells producing different HA-VLPs could help dissect the factors contributing to such fluctuations. In this study, the metabolic traces of insect cells during production of HA-VLPs with different valences and comprising HA strains from different groups/subtypes were assessed using targeted metabolic analysis and metabolic flux analysis. A total of 27 different HA-VLP variants were initially expressed, with titers varying from 32 to 512 HA titer/mL. Metabolic analysis of cells during the production of a subset of HA-VLPs distinct for each category (i.e., group 1 vs. 2, monovalent vs. multivalent) revealed that (i) expression of group-2 VLPs is more challenging than for group-1 ones; (ii) higher metabolic rates are not correlated with higher VLP expression; and (iii) specific metabolites (besides glucose and glutamine) are critical for central carbon metabolism during VLPs expression, e.g., asparagine, serine, glycine, and leucine. Principal component analysis of specific production/consumption rates suggests that HA group/subtype, rather than VLP valency, is the driving factor leading to differences during influenza HA-VLPs production. Nonetheless, no apparent correlation between a given metabolic footprint and expression of specific HA variant and/or VLP design could be derived. Overall, this work gives insights on the metabolic profile of insect High Five cells during the production of different HA-VLPs variants and highlights the importance of understanding the metabolic mechanisms that may play a role on this system’s productivity.

Funder

EU-funded project “EDUFLUVAC”

iNOVA4Health

Associate Laboratory LS4FUTURE

“Investigador FCT” Program

Exploratory Research and Development Project

PhD fellowship

PVE program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3