Balancing Water Ecosystem Services: Assessing Water Yield and Purification in Shanxi

Author:

Li Man1,Li Shanshan1,Liu Huancai12,Zhang Junjie1

Affiliation:

1. School of Geographical Science, Shanxi Normal University, Taiyuan 030031, China

2. School of Geography and Tourism, Shaanxi Normal University, Shannxi 710062, China

Abstract

Water yield and purification are important aspects of water ecosystem services, and achieving a balanced development of the two is necessary for the development of aquatic ecosystems. Using the InVEST model, the spatiotemporal variations of regional water yield and purification services in Shanxi, China, from 2000 to 2020 were analyzed. Three future scenarios (natural development, urban development, and ecological protection) were assessed for 2030 using the PLUS model. The results showed that in 2000–2020, the water yield of Shanxi Province in terms of space was generally low in the middle and northwest and high in the southeast, and it was affected by land-use change and climatic change. From 2000 to 2020, the water yield of Shanxi Province changed by 78.8 mm. In 2030, water yield will be highest under the urban development scenario (380.53 mm) and lowest in the ecological protection scenario (368.22 mm). Moreover, the water quality purification capacity improved, with nitrogen loading high in the center and low in the east and west. Due to the implementation of environmental protection policies and the improvement of the technical level, the nitrogen load was the highest in 2000 (0.97 kg/hm2) and lowest in 2015 (0.94 kg/hm2). By 2030, because of the high nitrogen loadings of cultivation and construction land and low nitrogen loadings of forests and grasslands, the nitrogen load was lowest under the scenario of urban development (0.94 kg/hm2) and highest under ecological protection (0.85 kg/hm2).

Funder

the Natural Science Research Project of Shanxi Province

Key subject of Shanxi Federation of Social Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference50 articles.

1. Changes in land-uses and ecosystem services under multi-scenarios simulation;Liu;Sci. Total Environ.,2017

2. Identification of Water Scarcity and Providing Solutions for Adapting to Climate Changes in the Heihe River Basin of China;Deng;Adv. Meteorol.,2014

3. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality;Li;Sci. Total Environ.,2023

4. Effect of urbanization on aerosol optical depth over Beijing: Land use and surface temperature analysis;Ban;Urban Clim.,2023

5. Research on the essence and practical significance of the “Two Mountains Theory”;Chen;For. Econ.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3