Changes in Extreme Precipitation on the Tibetan Plateau and Its Surroundings: Trends, Patterns, and Relationship with Ocean Oscillation Factors

Author:

Hu Wenfeng,Chen Lingling,Shen Jianyun,Yao JunqiangORCID,He Qing,Chen Jing

Abstract

The Tibetan Plateau is among the region’s most sensitive areas to global climate change. The observation data from 113 meteorological stations on the Tibetan Plateau and surrounding regions in China for 1971–2017 were used to analyze the periodic oscillations and trends in precipitation and extreme precipitation on multiple time scales to ensemble empirical mode decomposition. The relationship between extreme precipitation and sea-surface temperature (SST) anomalies was also explored. The results were as follows. (1) The timing of extreme-precipitation events in the highlands is consistent, with increased total precipitation and increased frequency, intensity, and extreme values of extreme precipitation. (2) Changes in temperature and precipitation are not completely synchronized. The total extreme precipitation, number of extreme-precipitation days, maximum single-day precipitation, and extreme single-day precipitation intensity all showed increases with fluctuations; the quasi-3-year oscillation contributes the most to the extreme precipitation. PRCPTOT is most strongly correlated with R10 and R95p. (3) The spatiotemporal patterns of the first and second empirical orthogonal function modes of the indices differed significantly and were not spatiotemporally uniform, but exhibited local clustering. (4) The Indian Ocean Warm Pool Strength and Western Pacific Warm Pool Strength indices were most highly correlated with each extreme-precipitation index, and the timings of the extreme-precipitation events lagged behind those of the SST anomalies. This study improves our understanding of extreme precipitation events in the context of climate warming and provides a basic analysis for the further assessment and prediction of extreme precipitation on the Tibetan Plateau and the surrounding ecologically fragile areas.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference85 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. Mechanisms Contributing to the Warming Hole and the Consequent U.S. East–West Differential of Heat Extremes

3. Disappearing “alpine tundra” Köppen climatic type in the western United States

4. Recent warming amplification over high elevation regions across the globe;Wang;Clim. Dyn.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3