Active Learning for Node Classification: An Evaluation

Author:

Madhawa KaushalyaORCID,Murata TsuyoshiORCID

Abstract

Current breakthroughs in the field of machine learning are fueled by the deployment of deep neural network models. Deep neural networks models are notorious for their dependence on large amounts of labeled data for training them. Active learning is being used as a solution to train classification models with less labeled instances by selecting only the most informative instances for labeling. This is especially important when the labeled data are scarce or the labeling process is expensive. In this paper, we study the application of active learning on attributed graphs. In this setting, the data instances are represented as nodes of an attributed graph. Graph neural networks achieve the current state-of-the-art classification performance on attributed graphs. The performance of graph neural networks relies on the careful tuning of their hyperparameters, usually performed using a validation set, an additional set of labeled instances. In label scarce problems, it is realistic to use all labeled instances for training the model. In this setting, we perform a fair comparison of the existing active learning algorithms proposed for graph neural networks as well as other data types such as images and text. With empirical results, we demonstrate that state-of-the-art active learning algorithms designed for other data types do not perform well on graph-structured data. We study the problem within the framework of the exploration-vs.-exploitation trade-off and propose a new count-based exploration term. With empirical evidence on multiple benchmark graphs, we highlight the importance of complementing uncertainty-based active learning models with an exploration term.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference65 articles.

1. Foundations of Machine Learning;Mohri,2018

2. Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease

3. Understanding Machine Learning: From Theory to Algorithms;Shalev-Shwartz,2014

4. Active Learning Literature Survey;Settles,2009

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3