An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images

Author:

Boehringer Andrew S.,Sanaat Amirhossein,Arabi Hossein,Zaidi HabibORCID

Abstract

Abstract Purpose This study focuses on assessing the performance of active learning techniques to train a brain MRI glioma segmentation model. Methods The publicly available training dataset provided for the 2021 RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge was used in this study, consisting of 1251 multi-institutional, multi-parametric MR images. Post-contrast T1, T2, and T2 FLAIR images as well as ground truth manual segmentation were used as input for the model. The data were split into a training set of 1151 cases and testing set of 100 cases, with the testing set remaining constant throughout. Deep convolutional neural network segmentation models were trained using the NiftyNet platform. To test the viability of active learning in training a segmentation model, an initial reference model was trained using all 1151 training cases followed by two additional models using only 575 cases and 100 cases. The resulting predicted segmentations of these two additional models on the remaining training cases were then addended to the training dataset for additional training. Results It was demonstrated that an active learning approach for manual segmentation can lead to comparable model performance for segmentation of brain gliomas (0.906 reference Dice score vs 0.868 active learning Dice score) while only requiring manual annotation for 28.6% of the data. Conclusion The active learning approach when applied to model training can drastically reduce the time and labor spent on preparation of ground truth training data. Critical relevance statement Active learning concepts were applied to a deep learning-assisted segmentation of brain gliomas from MR images to assess their viability in reducing the required amount of manually annotated ground truth data in model training. Key points • This study focuses on assessing the performance of active learning techniques to train a brain MRI glioma segmentation model. • The active learning approach for manual segmentation can lead to comparable model performance for segmentation of brain gliomas. • Active learning when applied to model training can drastically reduce the time and labor spent on preparation of ground truth training data. Graphical Abstract

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3