Abstract
Context—The maintenance of aero engines is intricate, time-consuming, costly and has significant functional and safety implications. Engine blades and vanes are the most rejected parts during engine maintenance. Consequently, there is an ongoing need for more effective and efficient inspection processes. Purpose—This paper defines engine blade defects, assigns root-causes, shows causal links and cascade effects and provides a taxonomy system. Approach—Defect types were identified from the literature and maintenance manuals, categorisations were devised and an ontology was created. Results—Defect was categorised into Surface Damage, Wear, Material Separation and Material Deformation. A second categorisation identified potential causes of Impact, Environmental causes, Operational causes, Poor maintenance, Poor manufacturing and Fatigue. These two categorisations were integrated with an ontology. Originality—The work provides a single comprehensive illustrated list of engine blade defects, and a standardised defect terminology, which currently does not exist in the aviation industry. It proposes a taxonomy for both engine blade defects and root-causes, and shows that these may be related using an ontology.
Funder
Christchurch Engine Centre
Reference61 articles.
1. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions,2016
2. Failure analysis of gas turbine rotor blades
3. Gas turbine blades—A critical review of failure at first and second stages;Dewangan;Int. J. Mech. Eng. Robot. Res.,2015
4. Failure mechanisms in turbine blades of a gas turbine Engine—An overview;Rao;Int. J. Eng. Res. Dev.,2014
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献