Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach

Author:

Abrar Sajid,Farzaneh HoomanORCID

Abstract

Pakistan’s dependence on energy imports, inefficient power generation and distribution, and lack of planned investment have made the country’s economy vulnerable. Low carbon and resilient climate development in Pakistan can help to ensure climate action and reduce the chronic energy deficit ailing the country’s economy, society, and environment. This study focuses on developing and applying an integrated energy supply-demand modeling framework based on a combination of microeconomics and system integration theories, which can be used to address policies that could dramatically change the future course of Pakistan toward a low emission energy system. The methodology involves medium-term forecasting of energy demand using an integration of top-down and bottom-up modeling approaches. The demand-side model is interlinked with a bottom-up technology assessment supply model. The objective of the supply-side model is to identify the optimal combination of resources and technologies, subject to satisfying technical, institutional, environmental, and economic constraints, using the cost minimization approach. The proposed integrated model is applied to enable a complete perspective to achieve overall reductions in energy consumption and generation and better analyze the effects of different scenarios on both energy demand and supply sides in Pakistan. The results revealed that, in the baseline case, the energy demand is expected to increase from 8.70 Mtoe [106.7 TWh] to 24.19 Mtoe [297.2 TWh] with an annual average growth rate of 6.60%. Increasing the share of renewable energy power generation by 2030 can help to reduce emissions by 24%, which is accompanied by a 13% increase in the total cost of power generation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Paris Agreement,2015

2. Devising a Clean Energy Strategy for Asian Citie;Farzaneh,2019

3. Global Climate Risk Index 2020,2020

4. Pakistan’s Intended Nationally Determined Constribution (PAK-INDC),2016

5. CO2 emissions from fuel combustion;Outlook,2019

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3