Abstract
Biomass is a solid fuel that can be used instead of coal to address the issue of greenhouse gases. Currently, biomass is used directly in combustion or via co-combustion in coal-fired power plants. However, its use is limited due to calorific value and ash problems. In this study, wet torrefaction (WT) was carried out at various temperatures (160 °C, 180 °C, and 200 °C) and the properties of the product were evaluated. In comparison to dry torrefaction, the ash contained in biomass was extracted by an acidic solution (i.e., acetic acid) from the overreaction of the biomass. From examining the ash content of the treated WT, it was confirmed that K2O of basic ash was mainly extracted. In particular, in the case of K2O, since the main cause of combustion problems are issues such as fouling and slagging, the removed WT can be stably combusted in the boiler. Finally, the combustion and emission behaviors were evaluated by TGA-DTG and TGA-FTIR. As the fuel-N was decreased in the WT proess, the NOx in the emission gas after combustion was lower than that of raw miscanthus, and SO2 showed a similar value. As a result, it was confirmed that the WT sample is an advanced fuel in terms of fuel upgrading, alkali minerals, and NOx emission compared to raw miscanthus.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献