Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review

Author:

Nazos Antonios,Politi Dorothea,Giakoumakis Georgios,Sidiras DimitriosORCID

Abstract

This review deals with the simulation and optimization of the dry- and wet-torrefaction processes of lignocellulosic biomass. The torrefaction pretreatment regards the production of enhanced biofuels and other materials. Dry torrefaction is a mild pyrolytic treatment method under an oxidative or non-oxidative atmosphere and can improve lignocellulosic biomass solid residue heating properties by reducing its oxygen content. Wet torrefaction usually uses pure water in an autoclave and is also known as hydrothermal carbonization, hydrothermal torrefaction, hot water extraction, autohydrolysis, hydrothermolysis, hot compressed water treatment, water hydrolysis, aqueous fractionation, aqueous liquefaction or solvolysis/aquasolv, or pressure cooking. In the case of treatment with acid aquatic solutions, wet torrefaction is called acid-catalyzed wet torrefaction. Wet torrefaction produces fermentable monosaccharides and oligosaccharides as well as solid residue with enhanced higher heating value. The simulation and optimization of dry- and wet-torrefaction processes are usually achieved using kinetic/thermodynamic/thermochemical models, severity factors, response surface methodology models, artificial neural networks, multilayer perceptron neural networks, multivariate adaptive regression splines, mixed integer linear programming, Taguchi experimental design, particle swarm optimization, a model-free isoconversional approach, dynamic simulation modeling, and commercial simulation software. Simulation of the torrefaction process facilitates the optimization of the pretreatment conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3