Abstract
Car-following is an essential trajectory control strategy for the autonomous vehicle, which not only improves traffic efficiency, but also reduces fuel consumption and emissions. However, the prediction of lane change intentions in adjacent lanes is problematic, and will significantly affect the car-following control of the autonomous vehicle, especially when the vehicle changing lanes is only a connected unintelligent vehicle without expensive and accurate sensors. Autonomous vehicles suffer from adjacent vehicles’ abrupt lane changes, which may reduce ride comfort and increase energy consumption, and even lead to a collision. A machine learning-based lane change intention prediction and real time autonomous vehicle controller is proposed to respond to this problem. First, an interval-based support vector machine is designed to predict the vehicles’ lane change intention utilizing limited low-level vehicle status through vehicle-to-vehicle communication. Then, a conditional artificial potential field method is used to design the car-following controller by incorporating the lane-change intentions of the vehicle. Experimental results reveal that the proposed method can estimate a vehicle’s lane change intention more accurately. The autonomous vehicle avoids collisions with a lane-changing connected unintelligent vehicle with reliable safety and favorable dynamic performance.
Funder
National Natural Science Foundation of China
Scientific research project of Double First-Class International Cooperation and Development Project of Changsha University of Science and Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献