Connected Vehicle as a Mobile Sensor for Real Time Queue Length at Signalized Intersections

Author:

Gao Kai,Han Farong,Dong Pingping,Xiong NaixueORCID,Du Ronghua

Abstract

With the development of intelligent transportation system (ITS) and vehicle to X (V2X), the connected vehicle is capable of sensing a great deal of useful traffic information, such as queue length at intersections. Aiming to solve the problem of existing models’ complexity and information redundancy, this paper proposes a queue length sensing model based on V2X technology, which consists of two sub-models based on shockwave sensing and back propagation (BP) neural network sensing. First, the model obtains state information of the connected vehicles and analyzes the formation process of the queue, and then it calculates the velocity of the shockwave to predict the queue length of the subsequent unconnected vehicles. Then, the neural network is trained with historical connected vehicle data, and a sub-model based on the BP neural network is established to predict the real-time queue length. Finally, the final queue length at the intersection is determined by combining the sub-models by variable weight. Simulation results show that the sensing accuracy of the combined model is proportional to the penetration rate of connected vehicles, and sensing of queue length can be achieved even in low penetration rate environments. In mixed traffic environments of connected vehicles and unconnected vehicles, the queuing length sensing model proposed in this paper has higher performance than the probability distribution (PD) model when the penetration rate is low, and it has an almost equivalent performance with higher penetration rate while the penetration rate is not needed. The proposed sensing model is more applicable for mixed traffic scenarios with much looser conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3