A Study on the Strain-Softening Constitutive Model of Cementitious Sandstone

Author:

Sun ZhongguangORCID,Wang Kequan,Kang Yueming,Hu Wanli

Abstract

In order to further investigate the impacts of the water environment on the mechanical properties of rocks for an engineering project, taking the water-rich conditions in a coal mine as the engineering background, a series of tests were conducted, including the uniaxial compression test, the conventional triaxial compression test, and the constant axial pressure test on the cementitious sandstone. This was conducted along with the establishment of a multi-linear strain softening constitutive model. According to the tests, the following conclusions can be drawn. Firstly, as the water content increases, the weakening effect of water on the rock mass was obvious. Under various stress paths, the water weakened the rock body to various degrees. In other words, the weakening effect of water on the rock mass was either inhibited or promoted under different stress path conditions Secondly, under various stress paths, the turning point strength and strength variance rate of the rock mass’ mechanical properties decreased linearly with the increase of water content. This further proves that water has a weakening effect on the rock mass, showing that the failure of the specimen changes from brittleness to ductility. Thirdly, the test sample demonstrated different types of damages including the tensile failure, transformation from tensile-shear composite failure to shear failure, and expansion failure under three stress path conditions. In addition, the unloading process demonstrated some dynamic failure characteristics. The research aims to provide some foundational insights for the scientific design and safe construction of the mine and other underground engineering, especially rock mass engineering in the multi-water environment.

Funder

the Science innovation and entrepreneurship special funded projects of China Coal Technology& Engineering Group

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference27 articles.

1. 2020 Blue Book on Urban Underground Space Development in China (Public Edition),2020

2. Relying on China’s unique advantages, accelerate the great goal of becoming a powerful country through science and technology;Qian;Sci. Technol. Rev.,2020

3. Rock mechanics and hazard control in deep mining engineering in China;Man-Chao,2006

4. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems;Zhao;Chin. J. Rock Mech. Eng.,2021

5. A Review on Deterioration of Rock Caused by Water-Rock Interaction;Liu;Chin. J. Undergr. Space Eng.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3