Stability Analysis of Strongly Weathered Muddy Slate Slopes Considering Softening Conditions of Water Immersion

Author:

Shi Yungang1,Wang Jingyu2,Tan Xin3ORCID,Zhou Suhua3ORCID,Jin Yuxuan1,Yin Xin3

Affiliation:

1. Hunan Communications Research Institute Co., Ltd., Changsha 410015, China

2. CCCC Construction Group Co., Ltd., Beijing 100022, China

3. College of Civil Engineering, Hunan University, Changsha 410082, China

Abstract

To understand the stability of strongly weathered muddy slate slopes under water immersion effects, we obtained shear strength parameters of the weakly layered structures within this slate through direct shear tests. Point load tests were performed on in-site slate samples with varying water immersion durations to assess the water immersion’s softening impact on slate strength. Results highlight that muddy slate strength presents pronounced random variability, declining as water immersion duration increases. Drawing from shear strength parameters and the water immersion softening observed in laboratory and in-site tests, we formulated a numerical slope model that considers layered structures and water immersion conditions to evaluate slope stability. Numerical simulations suggest that the slate slope’s sliding surface, when layered, does not consistently form a basic circular arc or straight line. The slope safety factor (FOS) drops below 3, marking a notable decrease compared to a homogeneous slope (FOS = 3.22). In the model, multiple secondary sliding surfaces can emerge, leading to a sliding band with a specific thickness after introducing the random distribution of layer strength parameters. This further reduces the slope’s FOS to below 2.9. Water immersion makes slopes inclined to slide following the layered structure. If the dip angle of the slate’s layered structure is less steep than the slope’s dip angle, water immersion notably diminishes the FOS, which can dip to a minimum of 1.12.

Funder

National Natural Science Foundation of China

Transportation Science and Technology Development and Inovation Project of Hunan Province

Science and Technology Infrastructure Program of Guizhou Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3