Oestrus Analysis of Sows Based on Bionic Boars and Machine Vision Technology

Author:

Lei Kaidong,Zong Chao,Du XiaodongORCID,Teng Guanghui,Feng Feiqi

Abstract

This study proposes a method and device for the intelligent mobile monitoring of oestrus on a sow farm, applied in the field of sow production. A bionic boar model that imitates the sounds, smells, and touch of real boars was built to detect the oestrus of sows after weaning. Machine vision technology was used to identify the interactive behaviour between empty sows and bionic boars and to establish deep belief network (DBN), sparse autoencoder (SAE), and support vector machine (SVM) models, and the resulting recognition accuracy rates were 96.12%, 98.25%, and 90.00%, respectively. The interaction times and frequencies between the sow and the bionic boar and the static behaviours of both ears during heat were further analysed. The results show that there is a strong correlation between the duration of contact between the oestrus sow and the bionic boar and the static behaviours of both ears. The average contact duration between the sows in oestrus and the bionic boars was 29.7 s/3 min, and the average duration in which the ears of the oestrus sows remained static was 41.3 s/3 min. The interactions between the sow and the bionic boar were used as the basis for judging the sow’s oestrus states. In contrast with the methods of other studies, the proposed innovative design for recyclable bionic boars can be used to check emotions, and machine vision technology can be used to quickly identify oestrus behaviours. This approach can more accurately obtain the oestrus duration of a sow and provide a scientific reference for a sow’s conception time.

Funder

National Key Research and Development Program of China

Chongqing Technology Innovation and Application Development Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3