LPS Inhibits Fatty Acid Absorption in Enterocytes through TNF-α Secreted by Macrophages

Author:

Liu Heyuan,Kai Lixia,Du Huahua,Wang Xinxia,Wang Yizhen

Abstract

Diarrhea, such as steatorrhea, could result from fat absorption disorders, which could be caused by many factors, including Escherichia coli infection. However, it is not clear how E. coli affects fatty acid absorption in animals. Lipopolysaccharide (LPS), as one of the main pathogenic components of E. coli, is the main cause of the virulence of E. coli. Therefore, we used LPS to explore the underlying mechanism of E. coli that causes the inhibition of fatty acid absorption in the intestine. In this study, we found that LPS caused apoptosis of intestinal epithelial cells in mice. Further, caspase-3 activation caused the inhibition of fatty acid absorption in the intestinal porcine enterocyte cell line (IPEC-J2). However, direct treatment of LPS did not induce any significant change in fatty acid absorption in IPEC-J2. We then prepared conditioned medium of LPS-treated porcine macrophage cell line (3D4/2) for incubating IPEC-J2, as LPS initiates inflammation by activating immune cells. The conditioned medium decreased fatty acid absorption and caspase-3 activation in IPEC-J2. While inhibiting the activation of caspase-3 in IPEC-J2, conditioned medium no longer caused serious deficiency of fatty acid absorption. As IL-1β, IL-6, and TNF-α in conditioned medium increase significantly, IPEC-J2 was treated with IL-1β, IL-6, and TNF-α, respectively. Only TNF-α induced caspase-3 activation in IPEC-J2. Reducing the secretion of TNF-α in 3D4/2, there was no obvious activation of caspase-3 in IPEC-J2, and fatty acid absorption recovered effectively. Based on the above results, we hold the opinion that LPS does not suppress fatty acid absorption directly in the intestine, but may work on macrophages that secrete cytokines, such as TNF-α, inducing caspase-3 activation and finally leading to the inhibition of fatty acid absorption in intestine.

Publisher

MDPI AG

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3