Abstract
Lysyl oxidase (LOX) proteins comprise a family of five copper-dependent enzymes (LOX and four LOX-like isoenzymes (LOXL1–4)) critical for extracellular matrix (ECM) homeostasis and remodeling. The primary role of LOX enzymes is to oxidize lysyl and hydroxylysyl residues from collagen and elastin chains into highly reactive aldehydes, which spontaneously react with surrounding amino groups and other aldehydes to form inter- and intra-catenary covalent cross-linkages. Therefore, they are essential for the synthesis of a mature ECM and assure matrix integrity. ECM modulates cellular phenotype and function, and strikingly influences the mechanical properties of tissues. This explains the critical role of these enzymes in tissue homeostasis, and in tissue repair and remodeling. Cardiac ECM is mainly composed of fibrillar collagens which form a complex network that provides structural and biochemical support to cardiac cells and regulates cell signaling pathways. It is now becoming apparent that cardiac performance is affected by the structure and composition of the ECM and that any disturbance of the ECM contributes to cardiac disease progression. This review article compiles the major findings on the contribution of the LOX family to the development and progression of myocardial disorders.
Funder
Instituto de Salud Carlos III
European Regional Development Fund
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献