Sex Differences in the Expression of c-fos in a Rat Brain after Exposure to Environmental Noise

Author:

Fernández-Quezada David,Luquín Sonia,Ruvalcaba-Delgadillo Yaveth,García-Estrada Joaquin,Jauregui-Huerta FernandoORCID

Abstract

Noise is an inarticulate stimulus that threatens health and well-being. It compromises audition and induces a strong stress response that activates the brain at several levels. In the present study, we expose male and female rats to environmental noise in order to investigate if acute or chronic stimulation produces differential brain activation patterns. The animals were exposed to a rat’s audiogram-fitted adaptation of a noisy environment and later sacrificed to quantify the expression of the brain activity marker c-fos. Additionally, the serum corticosterone (CORT) levels were measured to elucidate possible the stress-related effects of noise. It was found that environmental noise differentially increased the serum CORT levels in male and female rats. We identified 17 brain regions outside the classical auditory circuits with a high expression of c-fos, including the hypothalamus, prefrontal cortex, habenular complex, septum, cingulate cortex, nucleus accumbens, insular cortex, amygdala, and hippocampus. Overall, we evidenced that females exhibit less intense c-fos expression in most of the examined areas. We concluded that females might be less affected by the changes produced by environmental noise.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. Decibel Hell: The Effects of Living in a Noisy World

2. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance

3. A Theoretical Framework for Environmental Noise Annoyance;Stallen;Noise Health,1999

4. Auditory processing of complex sounds: an overview

5. Anatomophysiology of the Central Auditory Nervous System: Basic Concepts;Demanez;Acta Otorhinolaryngol. Belg.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3