Accelerated versus Slow In Vitro Aging Methods and Their Impact on Universal Chromatic, Urethane-Based Composites

Author:

Ilie Nicoleta1ORCID

Affiliation:

1. Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany

Abstract

Structural coloring of dental resin-based composites (RBC) is used to create universal chromatic materials designed to meet any aesthetic need, replacing the mixing and matching of multiple shades. The microstructural adjustments to create this desideratum involve nanoscale organic–inorganic core–shell structures with a particular arrangement. The generally higher polymer content associated with these structures compared to universal chromatic RBCs colored by pigments, which in their microstructure come close to regularly shaded RBCs, can influence the way the material ages. Accelerated and slow aging up to 1.2 years of immersion in artificial saliva at 37 °C were therefore compared in relation to their effects on the materials described above and in relation to the immersion conditions prescribed by standards. Quasi-static and viscoelastic parameters were assessed to quantify these effects by a depth-sensing indentation test equipped with a DMA module. The microstructure of the materials was characterized by scanning electron microscopy. The results convincingly show a differentiated influence of the aging protocol on the measured properties, which was more sensitively reflected in the viscoelastic behavior. Accelerated aging, previously associated with the clinical behavior of RBCs, shows a 2- to 10-fold greater effect compared to slow aging in artificial saliva of up to 1.2 years, highly dependent on the microstructure of the material.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3