Illustrative Application of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems to the Nordheim–Fuchs Reactor Dynamics/Safety Model

Author:

Cacuci Dan GabrielORCID

Abstract

The application of the recently developed “nth-order comprehensive sensitivity analysis methodology for nonlinear systems” (abbreviated as “nth-CASAM-N”) has been previously illustrated on paradigm nonlinear space-dependent problems. To complement these illustrative applications, this work illustrates the application of the nth-CASAM-N to a paradigm nonlinear time-dependent model chosen from the field of reactor dynamics/safety, namely the well-known Nordheim–Fuchs model. This phenomenological model describes a short-time self-limiting power transient in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This model is sufficiently complex to demonstrate all the important features of applying the nth-CASAM-N methodology yet admits exact closed-form solutions for the energy released in the transient, which is the most important system response. All of the expressions of the first- and second-level adjoint functions and, subsequently, the first- and second-order sensitivities of the released energy to the model’s parameters are obtained analytically in closed form. The principles underlying the application of the 3rd-CASAM-N methodology for the computation of the third-order sensitivities are demonstrated for both mixed and unmixed second-order sensitivities. For the Nordheim–Fuchs model, a single adjoint computation suffices to obtain the six 1st-order sensitivities, while two adjoint computations suffice to obtain all of the 36 second-order sensitivities (of which 21 are distinct). This illustrative example demonstrates that the number of (large-scale) adjoint computations increases at most linearly within the nth-CASAM-N methodology, as opposed to the exponential increase in the parameter-dimensional space which occurs when applying conventional statistical and/or finite difference schemes to compute higher-order sensitivities. For very large and complex models, the nth-CASAM-N is the only practical methodology for computing response sensitivities comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3