A Neural Networks Approach to Detecting Lost Heritage in Historical Video

Author:

Condorelli FrancescaORCID,Rinaudo FulvioORCID,Salvadore Francesco,Tagliaventi Stefano

Abstract

Documenting Cultural Heritage through the extraction of 3D measures with photogrammetry is fundamental for the conservation of the memory of the past. However, when the heritage has been lost the only way to recover this information is the use of historical images from archives. The aim of this study is to experiment with new ways to search for architectural heritage in video material and to save the effort of the operator in the archive in terms of efficiency and time. A workflow is proposed to automatically detect lost heritage in film footage using Deep Learning to find suitable images to process with photogrammetry for its 3D virtual reconstruction. The performance of the network was tested on two case studies considering different architectural scenarios, the Tour Saint Jacques which still exists for the tuning of the networks, and Les Halles to test the algorithms on a real case of an architecture which has been destroyed. Despite the poor quantity and low quality of the historical images available for the training of the network, it has been demonstrated that, with few frames, it was possible to reach the same results in terms of performance of a network trained on a large dataset. Moreover, with the introduction of new metrics based on time intervals the measure of the real time saving in terms of human effort was achieved. These findings represent an important innovation in the documentation of destroyed monuments and open new ways to recover information about the past.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference32 articles.

1. ImageNet classification with deep convolutional neural networks

2. Going deeper with convolutions;Szegedy;arXiv,2015

3. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2015

4. CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

5. Particular object retrieval with integral max-pooling of CNN activations;Tolias;arXiv,2016

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3