State-of-the-Art Geospatial Information Processing in NoSQL Databases

Author:

Guo DongmingORCID,Onstein ErlingORCID

Abstract

Geospatial information has been indispensable for many application fields, including traffic planning, urban planning, and energy management. Geospatial data are mainly stored in relational databases that have been developed over several decades, and most geographic information applications are desktop applications. With the arrival of big data, geospatial information applications are also being modified into, e.g., mobile platforms and Geospatial Web Services, which require changeable data schemas, faster query response times, and more flexible scalability than traditional spatial relational databases currently have. To respond to these new requirements, NoSQL (Not only SQL) databases are now being adopted for geospatial data storage, management, and queries. This paper reviews state-of-the-art geospatial data processing in the 10 most popular NoSQL databases. We summarize the supported geometry objects, main geometry functions, spatial indexes, query languages, and data formats of these 10 NoSQL databases. Moreover, the pros and cons of these NoSQL databases are analyzed in terms of geospatial data processing. A literature review and analysis showed that current document databases may be more suitable for massive geospatial data processing than are other NoSQL databases due to their comprehensive support for geometry objects and data formats and their performance, geospatial functions, index methods, and academic development. However, depending on the application scenarios, graph databases, key-value, and wide column databases have their own advantages.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Spatial Queries in NoSQL Databases: A Comparative Analysis of B-Tree, Hashed, and Geospatial Indexing Techniques;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

2. An Efficient NoSQL-Based Storage Schema for Large-Scale Time Series Data;Journal of Database Management;2024-03-08

3. A Survey of Cloud-Enabled GIS Solutions Toward Edge Computing: Challenges and Perspectives;IEEE Open Journal of the Communications Society;2024

4. A Reference Architecture for Data-Driven Intelligent Public Transportation Systems;IEEE Open Journal of Intelligent Transportation Systems;2024

5. From Functional Requirements to NoSQL Database Models: Application to IoT Geospatial Data;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3