An Efficient NoSQL-Based Storage Schema for Large-Scale Time Series Data
Author:
Affiliation:
1. University of Massachusetts, Lowell, USA
2. Nanjing University of Aeronautics and Astronautics, China
Abstract
In IoT (internet of things), most data from the connected devices change with time and have sampling intervals, which are called time-series data. It is challenging to design a time series storage model that can write massive time-series data in a short time and can query and analyze the persistent time-series data for a long time. This paper constructs the RHTSDB (Redis-HBase Time Series Database) storage model based on Redis and HBase. RHTSDB uses the memory database Redis (Remote Dictionary Server) to cache massive time-series data, providing efficient data storage and query functions. HBase is used in RHTSDB for long-term storage of time-series data to realize their persistence. The paper designs a cold and hot separation mechanism for time-series data, where the infrequently accessed cold data are stored in HBase, and the frequently accessed and latest data are stored in Redis. Experiments verify that RHTSDB has apparent advantages over Apache IoTDB and HBase in data intake and query efficiency.
Publisher
IGI Global
Reference38 articles.
1. ICHC Framework
2. Monarch
3. The Rise of NoSQL Systems
4. Analysing River Systems with Time Series Data Using Path Queries in Graph Databases
5. NagareDB: A Resource-Efficient Document-Oriented Time-Series Database
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3