A Scenario Generation Method for Typical Operations of Power Systems with PV Integration Considering Weather Factors

Author:

Wang Xinghua1,Liu Xixian1,Zhong Fucheng1,Li Zilv1,Xuan Kaiguo1,Zhao Zhuoli1

Affiliation:

1. Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Under the background of large-scale PV (photovoltaic) integration, generating typical operation scenarios of power systems is of great significance for studying system planning operation and electricity markets. Since the uncertainty of PV output and system load is driven by weather factors to some extent, using PV output, system load, and weather data can allow constructing scenarios more accurately. In this study, we used a TimeGAN (time-series generative adversarial network) based on LSTM (long short-term memory) to generate PV output, system load, and weather data. After classifying the generated data using the k-means algorithm, we associated PV output scenarios and load scenarios using the FP-growth algorithm (an association rule mining algorithm), which effectively generated typical scenarios with weather correlations. In this case study, it can be seen that TimeGAN, unlike other GANs, could capture the temporal features of time-series data and performed better than the other examined GANs. The finally generated typical scenario sets also showed interpretable weather correlations.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangdong Power Grid Power Grid Co., Ltd.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3