Extraction of typical operating scenarios of new power system based on deep time series aggregation

Author:

Qu Zhaoyang12,Zhang Zhenming1ORCID,Qu Nan3,Zhou Yuguang4,Li Yang1,Jiang Tao1,Li Min1,Long Chao5

Affiliation:

1. School of Electrical Engineering Northeast Electric Power University Jilin China

2. Jilin Province Technology Research Center of Power Big Data Intelligent Processing Jilin China

3. State Grid Jiangsu Electric Power Co. Ltd. Nanjing Power Supply Branch Nanjing China

4. State Grid Jilin Electric Power Company Limited Changchun China

5. Department of Electrical Engineering and Electronics University of Liverpool Liverpool UK

Abstract

AbstractExtracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system. A novel deep time series aggregation scheme (DTSAs) is proposed to generate typical operational scenarios, considering the large amount of historical operational snapshot data. Specifically, DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios. A Gramian angular summation field‐based operational scenario image encoder was designed to convert operational scenario sequences into high‐dimensional spaces. This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models. The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots. Case studies demonstrate that the proposed method extracted new fine‐grained power system dispatch schemes and outperformed the latest high‐dimensional feature‐screening methods. In addition, experiments with different new energy access ratios were conducted to verify the robustness of the proposed method. DTSAs enable dispatchers to master the operation experience of the power system in advance, and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3