Effects of Habitat Restoration on Fish Communities in Urban Streams

Author:

Lavelle Anna M.,Chadwick Michael A.,Chadwick Daniel D. A.,Pritchard Eleri G.,Bury Nicolas R.

Abstract

Geomorphological alterations, hydrological disconnectivity and water pollution are among the dominant pressures affecting ecological integrity in urban streams. River restoration approaches often involve utilising in-stream structures to encourage flow heterogeneity and promote habitat diversity. However, few studies examine the success of such projects. In this study, fish density, biomass and community structure at paired restored and unrestored reaches across five tributaries of the River Thames were examined. Fish density varied among rivers and reaches but was generally higher at restored sites. Restored sites also exhibited higher overall fish biomass, attributed mainly to the presence of brown trout (Salmo trutta L.) at the River Wandle. Despite higher density and biomass values at restored sites, the community structure analysis did not identify strong links between either river or restoration status using either species-specific density or biomass. Our results highlight that although reach-scale restoration can lead to localised increases in species density and biomass, this may chiefly be due to aggregation owing to preferential habitats created through restoration activities at these sites. Over larger spatial scales, significant improvements to species richness and diversity are likely to be limited due to the poor water quality and disconnected nature of these urban streams. Whilst reach-scale restoration clearly has the potential to provide preferential habitats for fish species, future efforts should focus on improving connectivity for fish across the wider Thames basin network by removing barriers to passage, improving water quality, restoring watershed processes and creating well-connected, diverse habitats which can facilitate the survival of a wide array of fish species throughout their life cycle.

Funder

Natural Environment Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3