Affiliation:
1. Department of Bio & Environmental Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
2. National Institute of Environmental Research, Incheon 22689, Republic of Korea
3. Center for Restoration of Endangered Species, National Institute of Ecology, Seocheon 33657, Republic of Korea
Abstract
The river is a dynamic space where erosion, transportation, and sedimentation are constantly occurring due to running water. This study aims to reveal the change in geomorphology caused by the flow characteristics of water in rivers and the response of vegetation to that. This study was carried out by clarifying the spatially appearing successional trends in the vegetation established in the stream bars and the riparian zones, which are located on different topographic conditions based on the vegetation profile, ordination result, and species diversity. The spatial distribution of vegetation on the stream bars tended to appear in the order of annual plant-, perennial plant-, and tree-dominated stands from the upstream toward a downstream direction (a gravel bar and a sand bar in a mountain gravel-bed river and an estuary, respectively) or the reversed one (a sand bar in a lowland river). The spatial distribution of vegetation on the riparian zones tended to appear in the order of annual plant-, perennial plant-, and tree-dominated stands from the waterfront toward the bank direction. Changes in species composition also differed depending on the spatial location, showing a similar trend to the spatial distribution of vegetation. Species diversity became higher in proportion to the longevity of the dominant species of each vegetation type. In conclusion, the longitudinal distribution pattern of vegetation on the stream bars resembles the lateral distribution of riparian vegetation, and the successional trends follow the spatial distribution pattern. These results suggest that the dynamics of bed loading, an allogenic process, may be an important determinant of the spatial distribution and succession of plant communities in dynamic riverine environments.
Funder
Korea Environment Industry & Technology Institute
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献