Evaluating Accuracy in Five Commercial Sleep-Tracking Devices Compared to Research-Grade Actigraphy and Polysomnography

Author:

Kainec Kyle A.12ORCID,Caccavaro Jamie3,Barnes Morgan23,Hoff Chloe23,Berlin Annika23,Spencer Rebecca M. C.123

Affiliation:

1. Neuroscience & Behavior Program, French Hall, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA

2. Institute for Applied Life Sciences, Life Science Laboratories, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA

3. Department of Psychological and Brain Sciences, Tobin Hall, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA 01003, USA

Abstract

The development of consumer sleep-tracking technologies has outpaced the scientific evaluation of their accuracy. In this study, five consumer sleep-tracking devices, research-grade actigraphy, and polysomnography were used simultaneously to monitor the overnight sleep of fifty-three young adults in the lab for one night. Biases and limits of agreement were assessed to determine how sleep stage estimates for each device and research-grade actigraphy differed from polysomnography-derived measures. Every device, except the Garmin Vivosmart, was able to estimate total sleep time comparably to research-grade actigraphy. All devices overestimated nights with shorter wake times and underestimated nights with longer wake times. For light sleep, absolute bias was low for the Fitbit Inspire and Fitbit Versa. The Withings Mat and Garmin Vivosmart overestimated shorter light sleep and underestimated longer light sleep. The Oura Ring underestimated light sleep of any duration. For deep sleep, bias was low for the Withings Mat and Garmin Vivosmart while other devices overestimated shorter and underestimated longer times. For REM sleep, bias was low for all devices. Taken together, these results suggest that proportional bias patterns in consumer sleep-tracking technologies are prevalent and could have important implications for their overall accuracy.

Funder

Commonwealth Honors College at the University of Massachusetts

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3