Small-Scale Rainfall Variability Impacts Analyzed by Fully-Distributed Model Using C-Band and X-Band Radar Data

Author:

Paz IgorORCID,Willinger Bernard,Gires AugusteORCID,Alves de Souza Bianca,Monier Laurent,Cardinal Hervé,Tisserand Bruno,Tchiguirinskaia Ioulia,Schertzer DanielORCID

Abstract

Recent studies have highlighted the need for high resolution rainfall measurements for better modelling of urban and peri-urban catchment responses. In this work, we used a fully-distributed model called “Multi-Hydro” to study small-scale rainfall variability and its hydrological impacts. The catchment modelled is a semi-urban area located in the southwest region of Paris, an area that has been previously partially validated. At this time, we make some changes to the model, henceforth using its drainage system globally, and we investigate the influence of small-scale rainfall variability by modelling three rainfall events with two different rainfall data inputs: the C-band radar data provided by Météo-France at a 1 km × 1 km × 5 min resolution, and the new X-band radar (recently installed at Ecole des Ponts, France) data at a resolution of 250 m × 250 m × 3.41 min, thereby presenting the gains of better resolution (with the help of Universal Multifractals). Finally, we compare the Multi-Hydro hydrological results with those obtained using an operational semi-distributed model called “Optim Sim” over the same area to revalidate Multi-Hydro modelling, and discuss the model’s limitations and the impacts of data quality and resolution, observing the difficulties associated with semi-distributed models when accounting the spatial variability of weather radar data. This work concludes that it may be useful in future to improve rainfall data acquisition, aiming for better spatio-temporal resolution (now achieved by the weather dual-polarized X-band radars) and data quality when considering small-scale rainfall variability, and to merge deterministic, fully-distributed and stochastic models into a hybrid model which would be capable of taking this small-scale rainfall variability into account.

Funder

DEPARTMENT OF SCIENCE AND TECHNOLOGY OF THE BRAZILIAN ARMY

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference60 articles.

1. Population Division, World Urbanization Prospects: The 2014 Revision, CD-ROM Edition,2014

2. Sustainable Development Goals https://sustainabledevelopment.un.org/?menu=1300

3. Global Report on Urban Health: Equitable, Healthier Cities for Sustainable Development,2016

4. Climate Change 2014: Synthesis Report,2014

5. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3